MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation

Chi Zhang¹, Zhiwei Li², Rui Cai², Yanhua Cheng², Hongyang Chao¹, Yong Rui²

¹ Sun Yat-Sen University, Guangzhou, P. R. China
² Microsoft Research, Beijing, P. R. China

Motivation
- Output high-quality meshes for view interpolation
- Unify depth map estimation and mesh generation

Variables
- \(\alpha \): A splitting probability for each 2D vertex
- \(D \): A depth value for each barycenter
- \(N \): A normal for each triangle

Formulation

\[
E_{\text{All}}(N, D, \alpha) = E_{\text{MatchingCost}} + E_{\text{NormalSmooth}} + E_{\text{Alignment}} + E_{\text{SplitPenalty}} + E_{\text{SplitSmooth}}
\]

Upper Layer MRF:
- \(E_{\text{SplitPenalty}}(\alpha) = \sum_{s,t \in N} \alpha_s \cdot \tau_s \)
 \(\tau_s = \exp(-|\nabla f(x_s, y_s)|/\gamma_1) \)
- \(E_{\text{SplitSmooth}}(\alpha) \sum_{s,t \in N} w_{st}(\alpha_s - \alpha_t)^2 \)
 \(w_{st} = \exp(-|k(x_s) - k(x_t)|/\gamma_2) \)
 \(k(x) = \max_j \{|f(x) - f(x_j)| < 10, \forall j \} \)

Lower Layer MRF:
- \(E_{\text{MatchingCost}}(N, D) = \sum_i \rho(n_i, d_i, p) \)
- \(E_{\text{NormalSmooth}}(N) = \sum_{i,j \in N} w_{ij}(n_i - n_j) \cdot (n_i - n_j) \)

Gluer:
- \(E_{\text{Alignment}}(N, D, \alpha) = \sum_s (1 - \alpha_s) \cdot \sum_{i,j \in G_s} w_{ij}(D_i(x_s) - D_j(x_s))^2 \)

Optimization

\[
\begin{align*}
E_{\text{UPPER}} &= E_{\text{Alignment}} + E_{\text{SplitPenalty}} + E_{\text{SplitSmooth}} \\
E_{\text{LOWER}} &= E_{\text{Alignment}} + E_{\text{MatchingCost}} + E_{\text{NormalSmooth}}
\end{align*}
\]

Minimize \(E_{\text{UPPER}} \) and \(E_{\text{LOWER}} \)
- Quadratic in \(\alpha \), has closed-form solution
- Non-convex, difficult, Relax it and optimize in another loop

- Increase \(\theta \) from 0 to \(\infty \), optimize alternatively between blue and green
- Optimize blue part by PatchMatch
- Optimize green part in closed-form

Stereo Results
- Preserve fine structures
- First place on Middlebury 3.0 at submission time

Generated Meshes
- Color
- ELAS
- SGM
- Ours